US 20080141057A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2008/0141057 A1

Hillman et al.

43) Pub. Date: Jun. 12, 2008

(54)

(735)

(73)

@
(22)

(63)

(60)

CACHE COHERENCY DURING
RESYNCHRONIZATION OF
SELF-CORRECTING COMPUTER

Inventors: Robert A. Hillman, San Diego, CA
(US); Mark Steven Conrad, San

Diego, CA (US)

Correspondence Address:

Anatoly S. Weiser, Esq.

Intellectual Property Legal Counsel
3525 Del Mar Heights Rd. #295
San Diego, CA 92130

Assignee: Maxwell Technologies, Inc., San

Diego, CA (US)

Appl. No.: 12/033,408

Filed: Feb. 19, 2008

Related U.S. Application Data

Continuation of application No. 11/356,945, filed on
Feb. 16, 2006, which is a continuation-in-part of appli-
cation No. 10/418,713, filed on Apr. 17, 2003.

Provisional application No. 60/451,041, filed on Feb.
28, 2003.

Publication Classification

(51) Int.CL
GOGF 1/12 (2006.01)
GOGF 15/76 (2006.01)
GOGF 11/00 (2006.01)

(52) US.CL ... 713/375; 714/13; 712/30; 712/E09.032;
714/E11.02; 714/E11.021

(57) ABSTRACT

A fault-tolerant computer uses multiple commercial proces-
sors operating synchronously, i.e., in lock-step. In an exem-
plary embodiment, redundancy logic isolates the outputs of
the processors from other computer components, so that the
other components see only majority vote outputs of the pro-
cessors. Processor resynchronization, initiated at predeter-
mined time, milestones, and/or in response to processor
faults, protects the computer from single event upsets. During
resynchronization, processor state data is flushed and an
instance of these data in accordance with processor majority
vote is stored. Processor caches are flushed to update com-
puter memory with more recent data stored in the caches. The
caches are invalidated and disabled, and snooping is disabled.
A controller is notified that snooping has been disabled. In
response to the notification, the controller performs a hard-
ware reset of the processors. The processors are loaded with
the stored state data, and snooping and caches are enabled.

/100

— — — — — —

120 SYS CONTROLLER |
| 121
60X NASTER BUS 122 CLK I
SMOOPING DISTRIBUTION
1toa Jma N |
PROCESSOR N V 1
; 125 SDRAM |
ﬂai 121 INTERFACE | !
| LOGIC
| 140
1 1)
PROCESSOR) MAIN MEMORY
126 |
“ DET I 134 EEPROM
128 PCH 129 PC) INTERFACE
110C e oy MASTER | TARGET
PROCESSOR w
—_— e O — — — _I
-7
176 LOCAL PCI BUS
-~ o<y ow -~
- o—_— e — — e e e — e] —
> - 7
150 xz l
- 151 PCI TARGET 153
PCI IF ARBITERS 174 C) L ARBITER
152
I PCI-PCI \
BRIDGE
154 155 fsesvs | 257 158 172 cPC|BUS
| INTRFC |1 cam | Tivers || &F° || scc
LOGIC CTRL
|
DISYRBTN

Patent Application Publication Jun. 12, 2008 Sheet 1 of 4 US 2008/0141057 A1

120 SYS CONTROLLER
| iF3]
60X NASTER BUS 122 CLK
| SNOOPING DISTRIBUTION

110A $124

PROCESSOR
12 125 SORAM c:i=c
3 124 INTERFACE

140
MAIN MEMORY

TMR LOGIC
110B 1
PROCESSOR

l 126

DET 134 EEPROM

126 PCE 128 PCI INTERFACE
110C ARF o MASTER TARGET
PROCESSOR l ‘szJ

R { ————

<
170 LOCAL PCI BUS
- - -

o —— — ——— — a— — — — — | —

N

- o
150 - I
PCI-IF 151 PCI TARGET 153 /L—-.,.c mb
ARBITERS N—]
152
l PCI-PCI |
BRIDGE
154 155 | 1sesvs || 337 158 172 cPC{BUS
| INTRFC RAM TIMERS GPIO sCC
LOGIC CTRL

159 CLX
L DISTRBTN

AL
@
|
I
|
|
|
|
|
|
|
|
|
|
| —

Patent Application Publication Jun. 12, 2008 Sheet 2 of 4 US 2008/0141057 A1

/ 200

210A
&

220A

2108

240

)

2208 230

210C

220C

i

FIG. 2

Patent Application Publication Jun. 12, 2008 Sheet 3 of 4 US 2008/0141057 A1

/ 126

350C
—

310A

P *

320A
330A

3108

PN e B 350A
310C : 340

P ® 3308

320C
| 3508

FIG. 3

Patent Application Publication

400
(

Jun. 12, 2008 Sheet 4 of 4

405
INITIATE PROCESSOR SCRUBBING

Y

410
FLUSH OUT INTERNAL PROCESSOR
STATE DATA

Y

415
STORE MAJORITY VOTE INTERNAL
PROCESSOR STATE DATA

Y

420
FLUSH OUT CACHES

Y

425
INVALIDATE AND DISABLE CACHES

Y

430
DISABLE SNOOPING

Y

435
NOTIFY SYSTEM CONTROLLER

Y

440
PROCESSOR HARDWARE RESET

Y

445
LOAD PROCESSORS WITH STORED
STATE DATA

Y

450
ENABLE SNOOPING

Y

455
ENABLE CACHES

Y

=

US 2008/0141057 A1

FIG. 4

US 2008/0141057 Al

CACHE COHERENCY DURING
RESYNCHRONIZATION OF
SELF-CORRECTING COMPUTER

REFERENCE TO RELATED PATENT
DOCUMENT

[0001] This application is a continuation and claims prior-
ity of U.S. patent application Ser. No. 11/356,945, entitled
CACHE COHERENCY DURING RESYNCHRONIZA-
TION, filed Feb. 16, 2006, now allowed; which is a continu-
ation-in-part of U.S. patent application Ser. No. 10/418,713,
entitled SELF-CORRECTING COMPUTER, filed on Apr.
17, 2003; which claims priority of U.S. Provisional Patent
Application Ser. No. 60/451,041, filed on Feb. 28, 2003. Each
of these related applications is hereby incorporated by refer-
ence in its entirety, including all tables, figures, claims, and
matter incorporated by reference therein.

FIELD OF THE INVENTION

[0002] The present invention relates generally to computer
systems. More specifically, the present invention relates to
fault-tolerant computer systems, such as radiation-hardened
computer systems for space applications.

BACKGROUND

[0003] Computer system reliability is always a concern, but
much more so in some settings than in others. In space, for
example, maintenance, repair, and replacement of computer
systems are either extremely expensive or impossible. Fur-
thermore, failure of a computer system may lead to complete
or partial mission failure. Environmental factors present in
such settings exacerbate these concerns. In space, the envi-
ronmental factors include both ionizing and non-ionizing
radiation.

[0004] Computer equipment failures due to ionizing radia-
tion are generally classified n three groups: (1) Total lonizing
Dose (“TID”), (2) Latch-up, and (3) Single Event Upsets
(“SEUs™).

[0005] Asthe name implies, TID failures result from cumu-
lative radiation exposure. TID failures can be dealt with by
shielding computer equipment from radiation.

[0006] Latch-up failures occur when a particle causes an
electronic device to consume excessive power and burn out.
Latch-up failures can be reduced or eliminated by selecting
parts that are not prone to latch-up.

[0007] Single event upsets result from change of state in an
electronic device, such as a memory element. Thus, an SEU is
nota “failure” in the conventional sense, but rather corruption
of state information. Because heavy ions with high relative
charges (i.e., multi-proton charges) tend to penetrate conven-
tional shielding, such shielding generally does not reduce
SEU occurrence frequency to an acceptable degree. The con-
ventional approach to reducing SEUs due to heavy ions is to
make radiation-hardened computer systems by designing
custom cells for known computer architecture. This approach
takes much time and money, and results in outdated designs.
First, license for a known computer architecture (processor
core) needs to be negotiated. Then, the cells of the processor
core must be redesigned, and the processor core must be
tested and put into production. The end result is a processor
core that is older than then-current state-of-the-art commer-

Jun. 12, 2008

cial parts, and slower and less power-efficient than the origi-
nal processor core architecture.

SUMMARY

[0008] A need thus exists for fault-tolerant computer archi-
tecture that does not suffer from these deficiencies.

[0009] Various embodiments of the present invention are
directed to methods of operating a fault-tolerant computer
system with a plurality of processors. According to one such
method, the processors are operated synchronously in paral-
lel while determining processor majority vote of processor
output signals. When processor resynchronization is initi-
ated, internal processor state data from the processors is
flushed out and an instance of the flushed out internal proces-
sor state data is determined by processor majority vote. In
other words, each data unit (e.g., bit, octet, byte) of the stored
data instance is the same as the majority of corresponding
data units of the processors. The instance of the internal
processor data determined by processor majority vote is
stored, for example, in unused locations of the main memory
of'the computer system. Processor caches are invalidated and
disabled. Cache snooping is also disabled. The processors are
then reset. Because snooping has been disabled, snooping
does not take place while the processors initialize and come
out of reset. After resetting, each processor is loaded with the
instance of the flushed out internal processor state data.
Snooping and caches are then enabled, and the processors
resume operating synchronously in parallel.

[0010] In aspects of the invention, snooping is disabled
after invalidating and disabling caches.

[0011] In aspects of the invention, resetting is performed
after disabling snooping.

[0012] Inaspects ofthe invention, snooping is enabled after
the processors are loaded with the stored instance of the
flushed out internal processor state data.

[0013] Inaspects of the invention, the caches of the proces-
sors are flushed out after flushing out internal processor state
data, but before invalidating caches.

[0014] In aspects of the invention, processor resynchroni-
zation is initiated at predetermined times or at predetermined
milestones of a software application executed by the com-
puter system.

[0015] In aspects of the invention, processor resynchroni-
zation is initiated in response to a single event upset in one of
the processors.

[0016] In aspects of the invention, processor resynchroni-
zation is initiated at predetermined intervals. The intervals
may be shortened in response to detection of an error in one of
the processors, such as detection of loss of synchronization of
one of the processors with respect to the other processors.
[0017] Various embodiments of the present invention are
directed to fault-tolerant computer systems. One such system
includes a plurality of processors configured to operate syn-
chronously in parallel. The system further includes multi-
module redundancy logic configured to receive outputs of the
processors, and to determine majority processor vote for each
of'the outputs. The system also includes a resynchronization
state machine configured to restore synchronous operation of
the plurality of processors through processor resynchroniza-
tion and prevent snooping while the processors come out of
reset. Each processor may be coupled to the multi-module
redundancy logic by a different processor bus.

[0018] In aspects of the invention, the fault-tolerant com-
puter system also includes a processor correlation detector
module configured to detect when an output of a processor
differs from outputs of a plurality of corresponding outputs of
the other processors.

US 2008/0141057 Al

[0019] Inaspects of the invention, the multi-module redun-
dancy logic provides the majority processor vote of at least a
plurality of the processor outputs to other computer system
components, such as memory controllers and bus controllers.
[0020] These and other features and aspects of the present
invention will be better understood with reference to the
following description, drawings, and appended claims.

BRIEF DESCRIPTION OF THE FIGURES

[0021] FIG. 1 is a high-level block diagram of a fault-
tolerant computer system, in accordance with some aspects of
the present invention;

[0022] FIG. 2 illustrates selected components of a circuit
for determining majority vote output signal from three pro-
cessor signal outputs, in accordance with some aspects of the
present invention;

[0023] FIG. 3 illustrates selected components of a proces-
sor correlation detector module for monitoring corresponding
outputs of three processors operating synchronously in par-
allel, and determining when the three processor outputs are
notat the same logic level, in accordance with some aspects of
the present invention; and

[0024] FIG. 4 illustrates selected steps of a processor resyn-
chronization method, in accordance with some aspects of the
present invention.

DETAILED DESCRIPTION

[0025] In this document, the words “embodiment” and
“variant” refer to particular apparatus, process, or article of
manufacture, and not necessarily to the same apparatus, pro-
cess, or article of manufacture. Thus, “one embodiment™ (or
a similar expression) used in one place or context can refer to
a particular apparatus, process, or article of manufacture; the
same or a similar expression in a different place can refer to a
different apparatus, process, or article of manufacture. The
expression “alternative embodiment™ and similar phrases are
used to indicate one of a number of different possible embodi-
ments. The number of possible embodiments is not necessar-
ily limited to two or any other quantity. Characterization of an
embodiment as “exemplary” means that the embodiment is
used as an example. Such characterization does not necessar-
ily mean that the embodiment is a preferred embodiment; the
embodiment may but need not be a currently preferred
embodiment.

[0026] The words “couple,” “connect,” and similar expres-
sions with their inflectional morphemes do not necessarily
import an immediate or direct connection, but include con-
nections through mediate elements within their meaning.
[0027] “Multi-module redundancy logic” refers to elec-
tronic circuitry that includes voting logic for examining each
valid and relevant signal from each of three or more proces-
sors, and detects differences in the corresponding signals.
When a particular processor output signal differs on the out-
puts of the three or more processors, the voting logic of the
multi-module redundancy logic “votes” the relevant signal
and operates on the assumption that the majority processor
vote is correct and a fault occurred in the processor with the
signal that differs from the majority vote value. Most compo-
nents of the computer system (e.g., components unrelated to
processor redundancy or to synchronous parallel processor
operation) do not see outputs of the individual processors;
instead, these components see the majority processor vote
outputs generated by the multi-module redundancy logic. In
three-processor systems, multi-module redundancy logic can
be referred to as triple module redundancy logic.

29 <

Jun. 12, 2008

[0028] A “processor bus” means a bus connecting a proces-
sor to multi-module redundancy logic, such as the triple mod-
ule redundancy logic described below.

[0029] “Corresponding” processor inputs or outputs refer
to the same functional connections on a plurality of proces-
sors. For example, data bus bit 0 on a first processor corre-
sponds to data bus bit 0 on other processors.

[0030] References to a “plurality of processors operating
synchronously in parallel,” “processors operating in parallel,”
and similar expressions signify three or more processors
operating synchronously to provide computer fault-toler-
ance, in the way described in the incorporated disclosures and
in this document. Outputs of the processors are voted, and
majority vote is output to most other components of the
computer system. Corresponding inputs to each of the pro-
cessors are driven by the same signals, so that when no fault
is present, the processors are identically driven and output to
the system the same signal levels on corresponding outputs,
and the computer system can tolerate faults in at least one of
the processors. This can be achieved using multi-module
redundancy logic.

[0031] “Processor resynchronization” refers to synchroni-
zation of processors in accordance with majority processor
vote, as is described in more detail later in this document.

[0032] Other and further definitions and clarifications of
definitions may be found throughout this document. All the
definitions are intended to assist in understanding this disclo-
sure and the appended claims, but the scope and spirit of the
invention should not be construed as strictly limited to the
definitions, or to the particular examples described in this
specification.

[0033] Reference will now be made in detail to several
embodiments of the invention that are illustrated in the
accompanying drawings. Same reference numerals may be
used in the drawings and the description to refer to the same
components or steps. The drawings are in simplified form and
not to precise scale. For purposes of convenience and clarity
only, directional terms, such as top, bottom, left, right, up,
down, over, above,

[0034] Referring more particularly to the drawings, FIG. 1
illustrates a computer system 100 capable of tolerating single
event upsets and other processor faults. The system 100
includes three processors 110A, 110B, and 110C coupled to a
system controller chip module 120. The three processors 110
operate synchronously in parallel and are coupled to the sys-
tem controller module 120 via separate processor buses 112,
as shown in the Figure. The system 100 further includes a
main memory module 140 and a PCI-IF chip module 150,
which is coupled to the system controller module 120 via a
local PCI bus 170.

[0035] Each processor 110 can be implemented as a single
chip unit or as a combination of components, for example, as
a chip set. In some variants, each processor 110 is a Pow-
erPC® (“PPC”) processor made by International Business
Machines Corporation of Armonk, N.Y. The invention, how-
ever, can work with a multitude of other processors. The
processors 110 can be commercially available state-of-the-art
processors.

[0036] The use of commercially available state-of-the-art
processors allows the computer system 100 to achieve
improved performance. Of course, the state-of-the-art pro-
cessors depend greatly on the timing of the selection of the
processors. Historically, processor speeds have doubled
every 18 months. Thus, the ability to use state-of-the-art
processors for certain applications may provide a tremendous
advantage.

US 2008/0141057 Al

[0037] Although the embodiment of FIG. 1 employs three
processors 110, the invention is not limited to this number of
processors. For example, processor fault tolerance can be
enhanced further by increasing the number of processors. As
will become more clear from the remainder of this document,
the use of three processors 110 enables the computer system
to tolerate a single event upset; higher-number processor
systems can provide fault tolerance even in the case of mul-
tiple simultaneous (or almost simultaneous) single event
upsets. Using an odd number of processors prevents tie votes
in case of one single event upset.

[0038] The main memory module 140 may include one or
more synchronous dynamic random access memory
(SDRAM) chips, static random access memory (SRAM)
chips, programmable read only memory (PROM) chips, elec-
trically erasable programmable read only memory (EE-
PROM) chips, and/or other memory devices. In one exem-
plary variant, the main memory 140 includes (1) three
SDRAM 72SD3232 one Gigabit chips protected by error
correction coding (ECC), (2) a 32Kx8 UT28F256 PROM
chip protected by error correction coding, and (3) a 2 Megabit
79L.V2040 EEPROM chip, which is also protected by error
correction coding. Error correction coding, for example, par-
allel Reed-Solomon coding, provides memory fault tolerance
in the computer system 100. The SDRAM chips can be
employed, for example, as a scratch pad memory and to store
instructions executed by the processors 110, as well as other
data. Other main memory configurations and other memory
devices also fall within the scope of the present invention.

[0039] As illustrated in FIG. 1, the PCI-IF module 150 is
coupled to the system controller 120 via the local PCI bus
170. The module 150 includes a PCI target 151, 1553 inter-
face logic 154, 1553 random access memory (RAM) 155,
system timers 156, general purpose 1/O (GPIO) controller
157, synchronous/asynchronous serial communications con-
troller (SCC) 158, PCI-PCI bridge 152, arbiters 153, and
clock distribution circuit 159.

[0040] Intheillustrated embodiment, the system controller
module 120 includes various logic components 124, such as
memory controllers, interrupt handlers, direct memory access
(DMA) modules, universal asynchronous receiver/transmit-
ter (UART), watchdog timer, and mission timer. The system
controller module 120 also includes a PCI master 128, PCI
target 129, SDRAM interface 125, EEPROM interface 134,
triple module redundancy (TMR) logic 123, processor corre-
lation detector module 126, and resynchronization state
machine 127. The functions of the TMR logic 123, processor
correlation detector module 126, and resynchronization state
machine 127 will be discussed in more detail below.

[0041] The processors 110 operate synchronously in paral-
lel. The TMR logic 123, which is coupled to each of the
processors 110 via the processor buses 112, transmits syn-
chronous signals between each of the processors 110 and the
rest of the computer system 100. The processors 110 thus
operate in complete synchronization with each other, at least
until a fault event. The TMR logic 123 includes voting logic
circuitry that examines each valid and relevant signal from
each of' the processors 110 and generates majority “votes” of
the corresponding outputs of the three processors. The voting
logic circuitry of the TMR logic 123 votes the relevant signal
and operates on the assumption that the majority vote is
correct and a fault occurred in the processor with the signal
that differs from the majority vote value. For example, if the
particular output of the processor 110A is at a logic 0 level
while the corresponding outputs of the processors 110B and
110C are at a logic 1 level, the majority vote logic circuitry
assumes that a fault occurred in the processor 110A. As a

Jun. 12, 2008

natural effect of majority voting, the TMR logic 123 isolates
the faulty processor 110A, and continues to transmit signals
between the non-faulty processors 110B/C and the rest of the
computer system 100. Thus multiplexing is not required to
isolate the faulty processor from the system.

[0042] Because the processors 110 are connected to most of
the components of the system 100 through the TMR logic
123, these components are isolated from the processors 110
and see only the majority vote for each processor signal.
Consequently, these components are not affected by the
single event upset of the processor 110A and continue to
function normally. In this way, the computer system 100 can
continue to operate following a fault in the processor 110A
(or in another processor).

[0043] To restore fault tolerance after a single event upset in
one ofthe processors 110, the system 100 can synchronize the
processor in which the single event upset occurred with the
other processors. In case of a fault (single event upset) in the
processor 100A, the system 100 suspends operation of the
processor 110 (e.g., holds the processor 110A in reset), and
isolates this processor from the other components of the sys-
tem 100, so that the fault in the processor 110A will not cause
additional faults or errors in the system 100. The computer
system may log the fault in the main memory 140 or else-
where, for example, recording information that identifies the
time of the event, the faulty processor, and the signal or
signals on which the fault was detected. Then, the computer
system 100 flushes out the data describing the internal pro-
cessor state ofthe processors 110B and 110C, and, optionally,
of'the processor 110A in which the fault occurred.

[0044] The state data is data describing the state of internal
elements of'the processors that can change their state, includ-
ing counters, registers, and memory elements. Thus, not all of
the data may be flushed out of the processors; some data may
be recreated, some data may be irrelevant. The state data
flushed from the processors 110B and 110C is sufficient to
restore these or other identical processors (e.g., the upset
processor 110A) to the state that is identical or similar to the
state in which the processors 110B and 110C were at the time
when the state data were flushed out. As will become clear
from the following paragraphs, processor state data in this
context may but need not include internal processor cache
data.

[0045] In some embodiments, the processor state data is
flushed from all ofthe processors, and a majority vote is taken
for each data unit, for example, each bit of the flushed data. A
single instance of the flushed data in accordance with the
majority vote is stored for future use in synchronizing the
processors 110. In other words, each data unit of the stored
data instance is the same as the majority of corresponding
data units of all the processors 110.

[0046] After the processor state data is flushed and the
single instance of the flushed data in accordance with the
majority vote is stored, the processors 110B and 110C are also
reset. All the processors 110 are now in a reset state. The
processors 110 are then taken out of the reset state and ini-
tialized. Processor initialization may include, for example,
initialization of the memory management unit (MMU) of the
processor. After initialization, the stored state data is reloaded
into each processor 110, including the processor 110A. The
three processors 110 are thus once again in synchronization
(lock-step) with each other. The processors are then allowed
to continue running and performing the tasks of the applica-
tion or applications for which the system 100 is used.
[0047] The process of synchronizing the processors 110 in
accordance with majority vote is referred to as “processor
resynchronization.”

US 2008/0141057 Al

[0048] A single event upset in a processor may not always
be evinced at one of the processor outputs immediately after
occurring. Instead, it may be a latent upset that changes inter-
nal processor state and would affect an output at some later
time. During the latency of the single event upset of one
processor, another single event upset may affect a second
processor of the system 100. In this case, two processors
would be affected by single event upsets before processor
resynchronization is performed, and the majority vote of the
flushed processor state data may be invalid or not defined.
Consequently, the system 100 may not be able to recover from
the faults using processor resynchronization, and would need
to be reset. To reduce probability of such system failures, in
some embodiments processor resynchronization may be ini-
tiated at some intervals or upon reaching of some predeter-
mined milestones in the application code, regardless of fault
detection. The processor resynchronization intervals may be
constant or variable. In accordance with this method, proces-
sor resynchronization is performed at the scheduled time or
milestone even if no upset is detected. If a single event upset
is detected in one of the processors 110, the faulty processor
is held in reset (or otherwise suspended) until the scheduled
processor resynchronization; the remaining processors con-
tinue executing code until processor resynchronization is ini-
tiated. The upset thus does not affect the operation of most
other components of the computer system 100, and is trans-
parent to the user applications code being executed.

[0049] For example, processor resynchronization may be
performed once a second, whether an error is detected or not.
The processor resynchronization interval may also be a vari-
able interval. For example, the interval may be shortened after
a fault is in fact detected in one of the processors 110.

[0050] In an alternative embodiment, processor resynchro-
nization is performed at some intervals or upon reaching of
some predetermined milestone, and upon detection of an
upset.

[0051] FIG. 2 illustrates a circuit 200 for determining
majority vote output signal 240 from three corresponding
processor signal outputs 210A, 210B, and 210C. The circuit
200, which is part of TMR logic 123, includes three AND
logic gates 220A,220B, and 220C, and a three-input OR logic
gate 230. As a person skilled in the art should be able to
understand after studying FIG. 2, if any two of the processor
signal outputs 210A, 210B, and 210C are at a logic 1 level,
then the majority vote output signal 240 is also at logic 1 level;
if any two of the processor signal outputs 210A, 210B, and
210C are at a logic 0 level, then the majority vote output signal
240 is also at logic 0 level. The circuit 200 can be extended to
operate on more than three processor signal outputs, as would
be needed in embodiments with more than three processors.
Other circuits may be used for determining the majority vote
output signal.

[0052] FIG. 3 illustrates an embodiment of the processor
correlation detector module 126 for monitoring correspond-
ing outputs 310A, 310B, and 310C of the processors 110, and
determining when the three processor outputs are not at the
same logic level, signifying a fault in one of the processors
110, such as a single event upset. The processor correlation
detector module 126 includes three exclusive-OR (XOR)
logic gates 320A, 320B, and 320C, and two dual-input logic
OR gates 330A and 330B. As a person skilled in the art should
be ableto understand after studying FIG. 3, if all the processor
signal outputs 310 are the same, the output 340 will remain
low; ifany of the processor signal outputs 310 differs from the
other two processor signal outputs 310, then the output 340
will assume a high state. In the latter case, the outputs 350 can
be read to identify the faulty processor. For example, if the

Jun. 12, 2008

output 350A is low, then the signal output 310A differs from
the signal outputs 310B and 310C; if the output 350B is low,
then the signal output 310B differs from the signal outputs
310A and 310C, if the output 350C is low, then the signal
output 310C differs from the signal outputs 310A and 310B.
The processor correlation detector module 126 can be
extended to operate on more than three processor signal out-
puts, as would be needed in embodiments with more than
three processors. Other circuits may be used for monitoring
processor outputs and identifying processors in which a fault
(e.g., single event upset) has occurred.

[0053] Let us now focus on maintaining processor cache
coherency during the processor resynchronization, processes
described above and in the incorporated disclosures (U.S.
patent application Ser. No. 10/418,713 and U.S. Provisional
Patent Application Ser. No. 60/451,041). Many processors
are provided with on-chip cache memories (“caches™) for
faster access to recently-accessed data. Particularly in the
case of write-back caching, data in the cache (e.g., data in
level 1 or “L.1” cache) may be more current than the corre-
sponding data stored in the main memory. When an external
device tries to access a memory location in the main memory
140, the system 100 needs to determine whether the informa-
tion in the memory location is also stored in the internal
caches ofthe processors 110. If so, and the cache line has been
modified (and therefore differs from the corresponding infor-
mation stored in the main memory 140), the cache line that
stores the latest information corresponding to the memory
location needs to be flushed from the internal caches to the
main memory 140.

[0054] (An “external device” in this context is a device
external to the processors 110, e.g., devices of the PCI-IF chip
module 150, devices on the backplane PCI bus, and the on-
chip direct memory access engine; transactions generated by
such devices are “external device transactions.”)

[0055] Determining if the internal caches in the processors
110 store the latest information in the memory location is
referred to as cache “snooping” or simply “snooping.” In the
embodiment illustrated in FIG. 1, snooping is performed by a
60x Master Bus Snooping component 121. The Snooping
component 121 requests the processor bus, generates a trans-
action to the same memory location that, in effect, tells the
processors 110 to flush the data in the memory location to the
main memory 140. For example, if an external component
comes across the PCI bus to read from an address XXXX
XXXX, the read is forwarded to the Snooping component
121, which generates a transaction to XXXX XXXX. If this
transaction is a read transaction, the Snooping component
121 would broadcast the corresponding cache line across the
PPC buses, notifying the processors 110 of the snooping; the
processors 110 would then either flush the cache out or not,
depending on whether the memory location XXXX XXXX is
stored in the processor caches, and whether the data in the
memory location in the cache has been modified. If the pro-
cessors 110 determine that the memory location data is stored
in the caches and the data in the location has been modified,
the processors 110 generate an address retry (in embodiments
using PowerPC® processors) on the bus, telling the Snooping
component 121 to get off the bus and retry later. The proces-
sors 110 will then grab the bus and flush the cache line
corresponding to the address XXXX XXXX. The Snooping
component 121 will keep snooping until the processors 110
no longer object, i.e., until the processors 110 determine that
the memory location XXXX XXXX is not stored in the cache
(or has not been modified), or until the corresponding cache
line is flushed out to the main memory 140. Once the memory
location XXXX XXXX is flushed out, the processors 110 will

US 2008/0141057 Al

not object and will not generate an address retry. The system
100 (or, more precisely, the system controller 120) will then
allow the transaction to go the SDRAM and pick the data at
the address XXXX XXXX out.

[0056] Importantly, snoop transactions can be generated
during processor resynchronization, which includes a period
of time when the processors 110 come out of reset. This is so
because only the processors 110 are being reset during pro-
cessor resynchronization, while other components of the
computer system 100 (and components connected to the com-
puter system 100) continue to function normally. Snooping
during this time period may have undesirable and unpredict-
able consequences, for example, causing the three processors
110 not to be synchronized at the end of processor resynchro-
nization. Such outcome would result in a system failure and
therefore should be prevented.

[0057] FIG.4is aprocess flow diagram illustrating selected
steps of a method 400 for processor resynchronization that
reduces or eliminates snooping transactions when the proces-
sors 110 are coming out of reset initiated during processor
resynchronization. In accordance with this process, caches
are not reloaded/restored in the course of processor resyn-
chronization, and snooping by hardware (the system control-
ler 120) is bypassed or skipped (because the caches are
empty) during at least some portion of processor resynchro-
nization.

[0058] The method 400 is described with reference to the
computer system 100, but may also be performed in other
systems.

[0059] In the computer system embodiment of FIG. 1, the
steps of the method 400 (and particularly the steps 410
through 455) are performed or in whole or in part by the
resynchronization state machine 127 in combination with
software.

[0060] Although certain steps of the method 400 are
described serially, some of these steps can be performed by
separate elements in conjunction or in parallel, asynchro-
nously or synchronously, in a pipelined manner, or otherwise.
There is no particular requirement that the steps be performed
in the same order in which this description lists them, except
where explicitly so indicated, otherwise made clear from the
context, or inherently required. Furthermore, not every illus-
trated step is required in every embodiment in accordance
with the invention, while some steps that have not been spe-
cifically illustrated may be desirable or necessary in some
embodiments in accordance with the invention. It should be
noted, however, that the method 400 represents a particular
embodiment with all of the illustrated steps performed in the
given order.

[0061] At step 405, the computer system 100 initiates pro-
cessor resynchronization. As has been discussed above, pro-
cessor resynchronization may be initiated at some time pre-
viously determined, upon reaching a particular milestone, or
in response to a fault in the processors 110, for example, a
single event upset.

[0062] At step 410, the computer system flushes out the
data describing the internal processor state of the processors
110A, 110B, and 110C. Internal processor caches need not
but may be flushed out as part of this step. If the processor
caches are not flushed out, it is usually because they are
coherent with the main memory, for example, when using
write-through instead of write back cache policies.

[0063] At step 415, the computer system 100 stores a
majority vote instance of the internal processor state data. In
the stored instance, each data unit (e.g., bit, octet, byte, or
another unit) is determined in accordance with the states of
the majority of the processors 110, as has been described

Jun. 12, 2008

above. The instance may be stored in unused address loca-
tions of the main memory 140, or elsewhere.

[0064] At step 420, internal processor caches (e.g., L1
caches) of the processors 110 are flushed out so that the data
in the main memory 140 is updated with more current data in
the internal processor caches. This step may be combined
with the step 410.

[0065] At step 425, the internal processor caches of the
processors 110 are invalidated and disabled. It should be
noted that the caches may not need to be disabled. For
example, the caches may not need to be disabled if the pro-
cessors are about to be reset.

[0066] At step 430, snooping is caused to be bypassed or
skipped. In some embodiments, this step is taken after the
internal processor caches are flushed, invalidated, and dis-
abled in the steps 420 and 425. Bypassing snooping prevents
snooping due to external device activity at a later point, when
the processors 110 will be initializing when coming out of
reset.

[0067] Atstep 435, the system controller 120 is notified that
software is done, i.e., that snooping has been disabled.

[0068] In response to the notification of the step 435, the
system controller 120 resets the processors 110, at step 440. If
no single event upset has been detected in any of the proces-
sors 110, all three processors are reset in this step; if a single
event upset had previously been detected, the faulty processor
continues to be kept in reset while the non-faulty processors
are reset. The processors 110 may be released from the reset
state at substantially the same time, e.g., on the same clock
cycle.

[0069] After the processors 110 have been reset, they are
loaded with the processor state data of the majority vote
instance of the data, which was stored in the step 415. This
takes place at step 445.

[0070] After the processor state data are loaded in the step
445, the processors 110 should be in synchrony with each
other. Snooping is now enabled, at step 450.

[0071] Internal processor caches of the processors 110 are
enabled, at step 455, and the method 400 terminates at a flow
point 499. The computer system 100 can now continue
executing user application code that it was executing prior to
the processor resynchronization of the method 400.

[0072] The inventive fault-tolerant computer systems and
processor resynchronization methods have been described
above in considerable detail. This was done for illustration
purposes. Neither the specific embodiments of the invention
as a whole, nor those of its features, limit the general prin-
ciples underlying the invention. In particular, the invention is
not necessarily limited to the specific processors or computer
system components mentioned. The invention is also not
necessarily limited to three processors and triple module
redundancy, but extends to systems with other processor
quantities. The invention also extends to methods for prevent-
ing bus transactions while processors come out of reset. The
specific features described herein may be used in some
embodiments, but not in others, without departure from the
spirit and scope of the invention as set forth. Many additional
modifications are intended in the foregoing disclosure, and it
will be appreciated by those of ordinary skill in the art that, in
some instances, some features of the invention will be
employed in the absence of a corresponding use of other
features. The illustrative examples therefore do not define the
metes and bounds of the invention and the legal protection
afforded the invention, which function is served by the claims
and their equivalents.

US 2008/0141057 Al

We claim:

1. A method of operating a fault-tolerant computer system
with a plurality of processors, the method comprising steps
of:

flushing out internal processor state data from processors

of' the plurality of processors;

determining an instance of the flushed out internal proces-

sor state data in accordance with processor majority
vote;

storing the instance;

invalidating and disabling caches of the processors of the

plurality of processors;

disabling snooping;

holding each processor of the plurality of processors in

reset;

loading said each processor of the plurality of processors

with the instance;

enabling snooping; and

enabling the caches of the processors of the plurality of

processors.

2. The method of claim 1, wherein the plurality of proces-
sors comprises at least three processors, the method further
comprises synchronously operating all processors of the plu-
rality of processors in parallel while determining processor
majority vote of processor output signals, and the step of
enabling snooping is performed after initialization of the
memory management units of the at least three processors
following the step of holding.

3. The method of claim 2, further comprising:

flushing out the caches of the processors of the plurality of

processors between the step of flushing out internal pro-
cessor state data from processors of the plurality of
processors and the step of invalidating.

4. The method of claim 2, wherein the step of flushing out
internal processor state data is performed at predetermined
times.

5. The method of claim 2, wherein the step of flushing out
internal processor state data is performed at predetermined
milestones.

6. The method of claim 2, wherein the step of flushing out
internal processor state data is performed at predetermined
milestones of at least one software application executed by
the computer system.

7. The method of claim 2, wherein the step of flushing out
internal processor state data is performed in response to a
single event upset in at least one processor of the plurality of
processors.

8. The method of claim 2, wherein the step of flushing out
internal processor state data is performed at predetermined
intervals, further comprising:

shortening at least one of the intervals in response to an

error in at least one processor of the plurality of proces-
SOrs.

9. The method of claim 2, wherein the step of flushing out
internal processor state data is performed in response to loss
of synchronization of a first processor of the plurality of
processors with respect to at least a second processor and a
third processor of the plurality of processors.

Jun. 12, 2008

10. The method of claim 2, wherein the instance does not
include data stored in the caches of the processors of the
plurality of processors.

11. The method of claim 2, wherein the instance includes
all internal processor state data other than cache data stored in
the caches of the processors of the plurality of processors.

12. A method of using a fault-tolerant computer system
comprising at least three processors operating synchronously
in parallel, the method comprising:

operating the at least three processors with enabled snoop-
ing by external devices;

step for processor resynchronization of the at least three
processors; and

step for preventing snooping by the external devices while
the at least three processors are coming out of reset
caused by the step for processor resynchronization.

13. The method of claim 12, wherein each processor of the
at least three processors comprises a memory management
unit (MMU), and the step for preventing is performed until
initialization of the memory management units of the at least
three processors.

14. The method of claim 13, wherein the step for processor
resynchronization is performed after the step of operating.

15. The method of claim 13, wherein the step for processor
resynchronization is performed in response to a single event
upset in the at least three processors.

16. The method of claim 13, wherein the step for processor
resynchronization is performed at predetermined times.

17. The method of claim 13, wherein the step for processor
resynchronization is performed at predetermined milestones.

18. A fault-tolerant computer system comprising:

at least three processors configured to operate synchro-
nously in parallel, wherein the at least three processors
may operate with enabled snooping, and wherein the at
least three processors may operate with disabled snoop-
ing;

a means for receiving outputs of the processors, and for
determining majority processor vote for each of the out-
puts; and

a resynchronization means for synchronizing operation of
the at least three processors and preventing snooping by
external devices during time periods when the proces-
sors are (1) in reset and (2) initializing coming out of
reset.

19. A method of operating a fault-tolerant computer system
comprising a plurality of processors operating in lock-step,
the method comprising:

resynchronizing the processors; and

preventing bus transactions while the processors of the
plurality of processors are coming out of reset caused by
the step of resynchronizing.

20. The method of claim 18, wherein the step of preventing
comprises bypassing snooping, and the step of preventing is
performed at least until initialization of memory management
units (MMU) of the processors.

sk sk sk sk sk

